INTRODUCTION

Flow Switches

- Thermal Dispersion
- Piston
- Shuttle
- Paddle

Unique Designs . . . For Use in Liquids or Gases

GEMS' line of flow switches features a broad range of configurations for use in liquids or gases. At preset rates, ranging from 50 cc/min. to 100 GPM, GEMS switches will initiate alarm actuation or automatic shut-down of a system.

These switches feature high quality, corrosion-resistant materials for use in the toughest environments. Material choices, ranging from stainless steel to Ryton[®], offer vast chemical compatibility. Versions include switches with fixed or adjustable actuation settings, models for viscosity compensation or high pressures, in-line models and designs to satisfy any mounting or space requirement.

Variety of Operating Principles

The versatile GEMS Flow Switch line utilizes four basic operating principles. This catalog is organized into four operational types: Piston, Shuttle, Paddle and Electronic. The Shuttle models are for use with high flow rates; the Piston types are designed for low flow rates; the Paddle for large line sizes and the Electronic switches encompass state-of-theart electronics and positive visual indication.

Flow Rate Selection Guide

Set Point		Switch	Body
Water	Air	Series	Materials
50 cc to 300 cc/min.	2 to 50 SCFH	FS-926	Alloys
0.1 to 1.0 GPM (oil)	—	FS-930	
0.1 to 1.5 GPM	_	FS-4	Engineered Plastics
0.1 to 1.5 GPM	0.5 to 25.0 SCFM	FS-925	Alloys
0.1 to 1.5 GPM	_	FS-927	
0.1 to 11 GPM	_	FS-600	
0.1 to 60 GPM	_	RFS-2500 Rotorflow ¹	Eng. Plastics & Alloys
0.15 to 2.0 GPM	—	FS-380	Alloys
0.25 to 2.0 GPM	_	FS-380P	- Engineered Plastics
0.25 to 5.0 GPM	_	FS-500	
0.5 to 3.0 GPM	—	FS-480	Alloys
0.5 to 5.0 GPM	_	FS-150	- Engineered Plastics
0.5 or 2 GPM	_	FS-400P	
0.5 to 20.0 GPM	1.0 to 160.0 SCFM	FS-10798	
0.5 to 100 GPM	_	FS-200	
0.75 to 10.0 GPM	_	FS-400	Alloys
0.75 to 14.0 GPM	_	FS-400 Adjustable	
1.0 to 15.0 GPM	_	FS-200 Adjustable	
Dependent on Pipe Size and Paddle Length	_	FS-550 Series	

ContentsPage StartThermal Dispersion TypeG-2Piston TypeG-4Shuttle TypeG-18Paddle TypeG-25

1. See Section E.

Note: